An ERK2 docking site in the Pointed domain distinguishes a subset of ETS transcription factors.
نویسندگان
چکیده
The ETS transcription factors perform distinct biological functions despite conserving a highly similar DNA-binding domain. One distinguishing property of a subset of ETS proteins is a conserved region of 80 amino acids termed the Pointed (PNT) domain. Using enzyme kinetics we determined that the Ets-1 PNT domain contains an ERK2 docking site. The docking site enhances the efficiency of phosphorylation of a mitogen-activated protein kinase (MAPK) site N-terminal to the PNT domain. The site enhances ERK2 binding rather than catalysis. Three hydrophobic residues are involved in docking, and the previously determined NMR structure indicates that these residues are clustered on the surface of the Ets-1 PNT domain. The docking site function is conserved in the PNT domain of the highly related Ets-2 but not in the ets family member GABPalpha. Ablation of the docking site in Ets-1 and Ets-2 prevented Ras pathway-mediated enhancement of the transactivation function of these proteins. This study provides structural insight into the function of a MAPK docking site and describes a unique activity for the PNT domain among a subset of ets family members.
منابع مشابه
Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2.
Mitogen-activated protein (MAP) kinase substrates are believed to require consensus docking motifs (D-site, F-site) to engage and facilitate efficient site-specific phosphorylation at specific serine/threonine-proline sequences by their cognate kinases. In contrast to other MAP kinase substrates, the transcription factor Ets-1 has no canonical docking motifs, yet it is efficiently phosphorylate...
متن کاملStructure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site.
The Pointed (PNT) domain and an adjacent mitogen-activated protein (MAP) kinase phosphorylation site are defined by sequence conservation among a subset of ets transcription factors and are implicated in two regulatory strategies, protein interactions and posttranslational modifications, respectively. By using NMR, we have determined the structure of a 110-residue fragment of murine Ets-1 that ...
متن کاملA Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach
The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylati...
متن کاملRas/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment.
Cell signaling affects gene expression by regulating the activity of transcription factors. Here, we report that mitogen-activated protein kinase (MAPK) phosphorylation of Ets-1 and Ets-2, at a conserved site N terminal to their Pointed (PNT) domains, resulted in enhanced transactivation by preferential recruitment of the coactivators CREB binding protein (CBP) and p300. We discovered this phos...
متن کاملDocking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
Mitogen-activated protein kinase (MAPK) cascades control gene expression patterns in response to extracellular stimuli. MAPK/ERK (extracellular-signal-regulated kinase) kinases (MEKs) activate MAPKs by phosphorylating them; activated MAPKs, in turn, phosphorylate target transcription factors, and are deactivated by phosphatases. One mechanism for maintaining signal specificity and efficiency is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2002